klee
ConstantDivision.cpp
Go to the documentation of this file.
1//===-- ConstantDivision.cpp ----------------------------------------------===//
2//
3// The KLEE Symbolic Virtual Machine
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "ConstantDivision.h"
11
12#include "klee/ADT/Bits.h"
13
14#include <algorithm>
15#include <cassert>
16
17namespace klee {
18
19/* Macros and functions which define the basic bit-level operations
20 * needed to implement quick division operations.
21 *
22 * Based on Hacker's Delight (2003) by Henry S. Warren, Jr.
23 */
24
25/* 32 -- number of bits in the integer type on this architecture */
26
27/* 2^32 -- NUM_BITS=32 requires 64 bits to represent this unsigned value */
28#define TWO_TO_THE_32_U64 (1ULL << 32)
29
30/* 2e31 -- NUM_BITS=32 requires 64 bits to represent this signed value */
31#define TWO_TO_THE_31_S64 (1LL << 31)
32
33/* ABS(x) -- positive x */
34#define ABS(x) ( ((x)>0)?x:-(x) ) /* fails if x is the min value of its type */
35
36/* XSIGN(x) -- -1 if x<0 and 0 otherwise */
37#define XSIGN(x) ( (x) >> 31 )
38
39/* LOG2_CEIL(x) -- logarithm base 2 of x, rounded up */
40#define LOG2_CEIL(x) ( 32 - ldz(x - 1) )
41
42/* ones(x) -- counts the number of bits in x with the value 1 */
43static uint32_t ones(uint32_t x) {
44 x -= ((x >> 1) & 0x55555555);
45 x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
46 x = (((x >> 4) + x) & 0x0f0f0f0f);
47 x += (x >> 8);
48 x += (x >> 16);
49
50 return x & 0x0000003f;
51}
52
53/* ldz(x) -- counts the number of leading zeroes in a 32-bit word */
54static uint32_t ldz(uint32_t x) {
55 x |= (x >> 1);
56 x |= (x >> 2);
57 x |= (x >> 4);
58 x |= (x >> 8);
59 x |= (x >> 16);
60
61 return 32 - ones(x);
62}
63
64/* exp_base_2(n) -- 2^n computed as an integer */
65static uint32_t exp_base_2(int32_t n) {
66 uint32_t x = ~n & (n - 32);
67 x = x >> 31;
68 return x << n;
69}
70
71// A simple algorithm: Iterate over all contiguous regions of 1 bits
72// in x starting with the lowest bits.
73//
74// For a particular range where x is 1 for bits [low,high) then:
75// 1) if the range is just one bit, simple add it
76// 2) if the range is more than one bit, replace with an add
77// of the high bit and a subtract of the low bit. we apply
78// one useful optimization: if we were going to add the bit
79// below the one we wish to subtract, we simply change that
80// add to a subtract instead of subtracting the low bit itself.
81// Obviously we must take care when high==64.
82void ComputeMultConstants64(uint64_t multiplicand,
83 uint64_t &add, uint64_t &sub) {
84 uint64_t x = multiplicand;
85 add = sub = 0;
86
87 while (x) {
88 // Determine rightmost contiguous region of 1s.
89 unsigned low = bits64::indexOfRightmostBit(x);
90 uint64_t lowbit = 1LL << low;
91 uint64_t p = x + lowbit;
92 uint64_t q = bits64::isolateRightmostBit(p);
93 unsigned high = q ? bits64::indexOfSingleBit(q) : 64;
94
95 if (high==low+1) { // Just one bit...
96 add |= lowbit;
97 } else {
98 // Rewrite as +(1<<high) - (1<<low).
99
100 // Optimize +(1<<x) - (1<<(x+1)) to -(1<<x).
101 if (low && (add & (lowbit>>1))) {
102 add ^= lowbit>>1;
103 sub ^= lowbit>>1;
104 } else {
105 sub |= lowbit;
106 }
107
108 if (high!=64)
109 add |= 1LL << high;
110 }
111
112 x = p ^ q;
113 }
114
115 assert(multiplicand == add - sub);
116}
117
118void ComputeUDivConstants32(uint32_t d, uint32_t &mprime, uint32_t &sh1,
119 uint32_t &sh2) {
120 int32_t l = LOG2_CEIL( d ); /* signed so l-1 => -1 when l=0 (see sh2) */
121 uint32_t mid = exp_base_2(l) - d;
122
123 mprime = (TWO_TO_THE_32_U64 * mid / d) + 1;
124 sh1 = std::min( l, 1 );
125 sh2 = std::max( l-1, 0 );
126}
127
128void ComputeSDivConstants32(int32_t d, int32_t &mprime, int32_t &dsign,
129 int32_t &shpost ) {
130 uint64_t abs_d = ABS( (int64_t)d ); /* use 64-bits in case d is INT32_MIN */
131
132 /* LOG2_CEIL works on 32-bits, so we cast abs_d. The only possible value
133 * outside the 32-bit rep. is 2^31. This is special cased to save computer
134 * time since 64-bit routines would be overkill. */
135 int32_t l = std::max( 1U, LOG2_CEIL((uint32_t)abs_d) );
136 if( abs_d == TWO_TO_THE_31_S64 ) l = 31;
137
138 uint32_t mid = exp_base_2( l - 1 );
139 uint64_t m = TWO_TO_THE_32_U64 * mid / abs_d + 1ULL;
140
141 mprime = m - TWO_TO_THE_32_U64; /* implicit cast to 32-bits signed */
142 dsign = XSIGN( d );
143 shpost = l - 1;
144}
145
146}
#define TWO_TO_THE_32_U64
#define LOG2_CEIL(x)
#define XSIGN(x)
#define ABS(x)
#define TWO_TO_THE_31_S64
#define add(name, handler, ret)
uint64_t isolateRightmostBit(uint64_t x)
Definition: Bits.h:87
unsigned indexOfSingleBit(uint64_t x)
Definition: Bits.h:98
uint64_t indexOfRightmostBit(uint64_t x)
Definition: Bits.h:108
uint64_t sub(uint64_t l, uint64_t r, unsigned inWidth)
Definition: main.cpp:291
static uint32_t ldz(uint32_t x)
void ComputeMultConstants64(uint64_t multiplicand, uint64_t &add, uint64_t &sub)
static uint32_t ones(uint32_t x)
void ComputeUDivConstants32(uint32_t d, uint32_t &mprime, uint32_t &sh1, uint32_t &sh2)
void ComputeSDivConstants32(int32_t d, int32_t &mprime, int32_t &dsign, int32_t &shpost)
static uint32_t exp_base_2(int32_t n)